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Supplementary Figure S1. Directed acyclic graph (DAG) illustrating possible data-

generating processes underlying selection bias in Mendelian randomization (MR). 𝐺: the 

genetic instruments; 𝐸!: the exposure of interest; 𝐶: the confounder of the 𝐸!-𝐷 association; 

𝐷: the outcome of interest; 𝑈: the unmeasured confounder that affects both 𝐷 and the 

survival 𝑆; 𝛽"#!: the genetic associations on 𝐸!; 𝛽#!$: the causal effect of 𝐸! on 𝐷 that is the 

estimate of interest; 𝛽%$: the effect of 𝑈 on 𝐷; 𝐻𝑅"&: the relative hazard of 𝐺 on the survival 

𝑆	of the underlying population; 𝐻𝑅#!&: the relative hazard of 𝐸! on the survival 𝑆; 𝐻𝑅$&: the 

relative hazard of D on the survival 𝑆; 𝐻𝑅%&: the relative hazard of 𝑈 on the survival 𝑆. 

Moreover, 𝐻𝑅'&: the relative hazard of 𝐶 on the survival 𝑆, which is not showed in the DAG. 

 

Data generation process 

We are interested in estimating the causal effect (i.e., 𝛽#!$) of 𝐸! on 𝐷 in selected samples 

influenced by selecting on the genetic instruments 𝐺#!or exposure 𝐸! and outcome 𝐷 or the 

unmeasured confounder 𝑈 causing the outcome and the competing risks 𝐶𝑅, as shown in 

Figures 1(c)-(d). As such, selecting survivors may violate the IV3 assumption and induce 

selection bias. For simplicity, we modelled the impact of 𝑈 on survival directly instead of 

explicitly considering the competing risks 𝐶𝑅𝑠. We induced selection bias by selecting study 

participants among survivors of the original birth cohorts who formed the population until 

study recruitment, as shown in Figure S1. We assumed that the survival of the underlying 

population was influenced by 𝐺 (i.e., 𝐻𝑅"& = exp	(𝛽"&)),  𝐸! (i.e., 𝐻𝑅#!& = exp	(𝛽#!&)), C 

(i.e., 𝐻𝑅'& = exp	(𝛽'&)), D (i.e., 𝐻𝑅$& = exp	(𝛽$&)), and 𝑈 (i.e., 𝐻𝑅%& = exp	(𝛽%&)), 

reflecting by hazard ratio in per-unit change. Thus, selection bias arising from the sample 

selection among survival till study recruitment will be governed by 𝐻𝑅"&, 

𝐻𝑅#!&, 𝐻𝑅'&, 𝐻𝑅$&, and 𝐻𝑅%&. The impact of selection bias on MR estimates from sample 
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selection conditioning on genetic variants and the outcome D can be achieved by setting 

𝐻𝑅"& ≠ 1, 𝐻𝑅#!& = 1,𝐻𝑅'& = 1,𝐻𝑅$& ≠ 1, and 𝐻𝑅%& = 1.  

 

We generated survival time (T) for the underlying population via a Gompertz model 

presented in Smit et al.’s paper (1). Specifically, the Gompertz survival model was derived 

from the 2016 mortality data of the United States based on the Human Mortality Database 

within an R-package of MortalityLaws. Based on the generated survival time, we induced 

selection bias by allocating people aged 40 to 69 years to the exposure GWAS and those aged 

40 to 89 years to the outcome GWAS among survivors, constructing the two-sample MR 

setting. The reason here is that study participants in the exposure GWAS were always 

younger than in the outcome GWAS; i.e., risk factors (exposure) causes diseases 

(outcome).(2) However, this is not necessary for selection bias to occur, but is used as a 

simplification here. Often MR concerns continuous exposures and all-or-nothing outcomes, 

continuous variables are usually less biased by selection bias than all-or-nothing variables, so 

an age difference between the population generating the exposure and outcome is not 

required for selection bias to occur. 

 

Simulation study 

To illustrate selection bias in MR, as shown in Figures 1(c)-(d), we performed extensive 

simulation studies concerning IVW because it was the most widely used method.(3) 

 

For the 𝑖th subject, we simulated data on 𝑗th (i.e., 𝑗 = 1,… , 𝐽) genetic variant 𝐺() (which is 

coded 0, 1, and 2 to indicate the number of copies of relevant risk allele), exposure 𝐸!(, and 

outcome 𝐷( in the presence of an unobserved exposure-outcome confounder 𝐶(. We modelled 

the independent genetic variants via a Binominal distribution (e.g., 𝐺()~Bin=𝑚𝑎𝑓)A) with the 

minor allele frequency drawn from a Uniform distribution (e.g., 𝑚𝑎𝑓)~Unif(0.1,0.5)).  

 

In general, there are a number of unobserved exposure-outcome confounders (i.e., 𝐶( in 

Figure 1). We supposed 𝐶 is a continuous variable with mean and variance being 0 and 1, 

respectively. In the presence of selection bias, we assumed that no unmeasured exposure-

outcome confounders (i.e., 𝐶() exist (i.e., 𝛽'#! = 𝛽'$ = 0), but a single binary confounder 

(𝑈() that affects both the outcome 𝐷( and the competing risk (i.e., 𝐶𝑅(), as shown in Figure 
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1(c). For simplicity, we modelled the relative hazard of 𝑈 on survival (i.e., 𝐻𝑅%&) directly 

rather than via 𝐶𝑅𝑠, with the relative hazard of 𝐶 on survival modelled as 𝐻𝑅'&. Specifically, 

we simulated 𝑈 via a binominal distribution with a rate of 0.5. That is, the prevalence of 𝑈 

among the underlying population was 0.5. The effect of genetic variant 𝐺) on unobserved 

confounder 𝑈 is represented by 𝛽)"%, in which non-zero of 𝛽)"% indicates an invalid IV of 𝐺). 

Herein, we assumed that all instruments were valid IVs; that is, 𝛽)"% = 0 for 𝑗 = 1,… , 𝐽.  

 

The exposure 𝐸!( is linear in the genetic variants, unobserved confounder 𝑈(, and an 

independent error term 𝜖(#!, in which the genetic exposure association is represented by 

𝛽)"#!, with the confounding effect of 𝑈( represented by 𝛽%#!. We simulated the genetic-

exposure association 𝛽)"#! using a left-sided truncated normal distribution at 0.2 described 

by Slob and Burgess (4) to ensure risk increasing allele effects after standardization. The 

variance of the distribution is chosen to make the explained variation of exposure by all 

genetic variants be around 5%.(5)   

 

The outcome 𝐷( is a linear function of additive direct effect of 𝐺(), 𝐸!(, 𝑈(, and an 

independent error term 𝜖($, in which the confounding effect of 𝑈( represented by 𝛽%$. Thus, 

the direct effect of genetic variant 𝐺) (𝑗 = 1,… , 𝐽) on 𝐷 is represented by 𝛽)"$, in which non-

zero of 𝛽)"$ indicates the violation of IV3 assumption. For simplify, we set 𝛽%#! = 0, 𝛽%$ =

0.5, and 𝛽)"$~𝑁(0, 0.05*) for 𝑗 = 1,… , 𝐽. Thus, the causal effect of exposure 𝐸! on outcome 

𝐷 is represented by 𝛽#!$. In addition, the 𝜖(# and 𝜖($ are random errors and simulated 

through a standardized normal distribution, respectively. As such, the data generation 

modelling can be written mathematically, as follows. 

 

 

 

𝐺()~Bin=𝑚𝑎𝑓)A	independently, with	𝑚𝑎𝑓)~Unif(0.1,0.5),	

𝐶(~𝑁(0,1);	𝑈(~Bin(0.5),	

𝐸!() =P𝛽)"#!𝐺() +
+

),!

𝛽'#!𝐶( + 𝛽%#!𝑈( + 𝜖(#!,	



 5 

𝐷( =P𝛽)"$𝐺()

+

),!

+ 𝛽$#!𝐸!( + 𝛽'$𝐷( + 𝛽%$𝑈( + 𝜖($ ,	

𝐻𝑅( = expRP𝛽)"&𝐺() +
+

),!

𝛽#!&𝐸( + 𝛽$&𝐷( + 𝛽'&𝐶( + 𝛽%&𝑈(S ,	

𝑇( =
log W1 − 𝛾 log(𝑆()𝜆 ∗ 𝐻𝑅(

\

𝛾 , 𝜆 = 0.0000459053, 𝛾 = 0.0876978320, 𝑆(~Unif(0,1),	

𝑇( 	 ∈ [40,69]	for	the	exposure	GWAS,			𝑇( 	 ∈ [40,89]	for	the	outcome	GWAS,	

𝜖(#!, 𝜖($~𝑁(0,1)	independently. 

 

We emphasized scenarios as depicted in Figure 1 without violation of any required 

assumptions in MR, given NULL (𝛽#!$ = 0) or positive (𝛽#!$ = 1) association of 𝐸! with 

𝐷. That is, 

(1) Survival of the underlying population were mainly influenced by 𝐺) 	(𝑗 = 1,… , 𝐽), 

with a fixed effect of 𝐷 but for	𝐶,  𝐸! and 𝑈 on survival; i.e., 𝐻𝑅#!& = 1.0 , 𝐻𝑅'& =

1.0, 𝐻𝑅$& = 2.0, 𝐻𝑅%& = 1.0;  

(2) Survival of the underlying population were mainly influenced by 𝐷, with a fixed 

effect of 𝐸! but for 𝐺) (𝑗 = 1,… , 𝐽), 𝐶, and 𝑈 on survival; i.e., 𝐻𝑅")& = 1.25, 

𝐻𝑅#!& = 1.0, 𝐻𝑅'& = 1.0, 𝐻𝑅%& = 1.0; 

(3) Survival of the underlying population were mainly influenced by 𝐷, with a fixed 

effect of 𝐸! but for 𝐺) (𝑗 = 1,… , 𝐽), 𝑈, 𝐶, and 𝑈 on survival; i.e., 𝐻𝑅")& = 1.0, 

𝐻𝑅#!& = 1.5, 𝐻𝑅'& = 1.0, 𝐻𝑅%& = 1.0. 

 

We simulated data on 𝐽 = 10 genetic variants. Summary genetic associations were calculated 

for exposure and outcome separately based on the selected samples, referred to as the two-

sample MR.(5) We set the total sample size to be 100,000 to ensure adequate power. Notably, 

due to the different time lags between generic randomization at conception and the study 

recruitment for the exposure (i.e., 40-69 years) and outcome (i.e., 40-89 years) GWAS, 

sample sizes for genetic-exposure and genetic-outcome associations may vary, depending on 

the actual situations. All simulations were conducted in R (version 3.6.3). 
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Simulation results 

 
Figure 3 and Supplementary Figure S1 show the impact of selection bias arising from 

selecting samples conditioning on genetic instruments 𝐺 and outcome 𝐷, with no effects of 

either exposure 𝐸! or the shared confounder 𝑈 of 𝐷 mediated by competing risks on survival 

of the underlying population (i.e., birth cohort) based on simulation studies. As expected, 

selecting samples conditioning on genetic variant G and outcome D of interest induces 

selection bias, with its impacts varying depending on the relative hazard of  G and D on 

survival of the underlying population. Given summary statistics obtained from the original 

exposure and outcome GWASs, it seems not easy to recover the true causal estimate from the 

observed MR estimates in two-sample MR settings due to the essence missing people before 

the recruitment of the original GWASs. However, our proposal provides a valuable approach 

to assessing credible MR estimates in the presence of selection bias from selection of 

survivors.
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Figure 3.  The impacts of selection bias (i.e., 𝛽q#!$ − 𝛽#!$) on two-sample Mendelian randomization 
(MR) estimates of the exposure 𝐸!-outcome 𝐷 association using the inverse variance weighted method in 
terms of various relative hazard (HR) of per-unit change in genetic variant 𝐺 (i.e., 𝐻𝑅"&) with fixed 
effects of either 𝐷 (i.e., 𝐻𝑅$&) on survival of underlying population based on simulation studies, with 
more details presented in Supplementary Material 1. The upper panel (a)-(b) show scenarios that may 
happen in practice. The lower panel (c) shows the impacts of selection bias on MR estimates under each 
scenario. R codes for reproducing these results can be found in Supplementary Material 2. 
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Supplementary Figure S1. The impacts of selection bias (i.e., 𝛽q#!$ − 𝛽#!$) on two-sample 
Mendelian randomization (MR) estimates of the exposure 𝐸!-outcome 𝐷 association using 
the inverse variance weighted method in terms of various relative hazard (HR) of per-unit 
change in 𝐷 with fixed effects of either genetic instruments 𝐺  (i.e., 𝐻𝑅"&) or 𝐸! (i.e., 𝐻𝑅#!&) 
on survival of underlying population based on simulation studies. The upper panel (a)-(c) 
show six scenarios that may happen in practice. The lower panel (d) shows the impacts of 
selection bias on MR estimates under each scenario. 



 9 

References 

1. Smit RAJ, Trompet S, Dekkers OM, Jukema JW, le Cessie S. Survival bias in 

Mendelian randomization studies: A threat to causal inference. Epidemiology (2019) 

30(6):813-6. Epub 2019/08/03. doi: 10.1097/EDE.0000000000001072. PubMed PMID: 

31373921; PubMed Central PMCID: PMCPMC6784762. 

2. Schooling CM, Lopez PM, Yang Z, Zhao JV, Au Yeung SL, Huang JV. Use of 

multivariable Mendelian randomization to address biases due to competing risk before 

recruitment. Front Genet (2020) 11:610852. Epub 2021/02/02. doi: 

10.3389/fgene.2020.610852. PubMed PMID: 33519914; PubMed Central PMCID: 

PMCPMC7845663. 

3. Hemani G, Zheng J, Elsworth B, Wade KH, Haberland V, Baird D, et al. The MR-

Base platform supports systematic causal inference across the human phenome. Elife (2018) 

7. Epub 2018/05/31. doi: 10.7554/eLife.34408. PubMed PMID: 29846171; PubMed Central 

PMCID: PMCPMC5976434. 

4. Slob EAW, Burgess S. A comparison of robust Mendelian randomization methods 

using summary data. Genet Epidemiol (2020) 44(4):313-29. Epub 2020/04/07. doi: 

10.1002/gepi.22295. PubMed PMID: 32249995; PubMed Central PMCID: 

PMCPMC7317850. 

5. Pierce BL, Burgess S. Efficient design for Mendelian randomization studies: 

subsample and 2-sample instrumental variable estimators. Am J Epidemiol (2013) 

178(7):1177-84. Epub 2013/07/19. doi: 10.1093/aje/kwt084. PubMed PMID: 23863760; 

PubMed Central PMCID: PMCPMC3783091. 

 


